| Week. | Mathematical aspect | Non-negotiable end points Year 5. | Non-negotiable end points Year 6 | Curriculum statements – Year 5. | Curriculum Statements. Year 6. | |---|--|--|--|--|---| | 1. | Number and place
value:
positive and negative
numbers and
rounding | Knows how to read and interpret negative numbers and find differences between negative and positive numbers. | Knows how to calculate with negative and positive numbers. | To interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers through zero. To round any number up to 1,000,000 to the nearest 10, 100, 1000, 10,000 and 100,000. To solve number problems and practical problems that involve all of the above. | To read, write, order and compare numbers at least to 10,000,000 and determine the value of each digit. To round any whole number to a required degree of accuracy. To use negative numbers in context and calculate intervals across zero. To solve number problems and practical problems that involve all of the above. | | Use the number line to a state of the | ## 1 | | | Which place has the coldest temperature? Which place has the warmest temperature? What is the difference in the temperatures in Dublin and Copenhagen? The temperature in Paris decreases by 5°C. What is the new temperature in London increases by 6°C. What is the new temperature? The temperature in Josio increases by 4°C. What is the new temperature? The temperature in Dolo increases by 3°C. What is the new temperature? The temperature in Berlin decreases by 3°C. What is the new temperature? The temperature? The temperature in Berlin decreases by 3°C. What is the new temperature? The temperature? The temperature in Berlin decreases by 3°C. What is the new temperature? The temperature in Berlin decreases by 3°C. What is the new temperature? The temperature in Berlin decreases by 3°C. What is the new temperature? | At midright it is 7°c colder. What is the temperature measured by this thermometer? If the temperature fell by 18°C what would it be? a) Continue this number sequence: 7 5 3 1 b) Continue this number sequence: | | 2. | All four operations: order of operations, | Knows the formal written methods of columnar addition | Knows the rules of BODMAS. Knows the compact | To add and subtract whole numbers with more than 4 digits, including using efficient written methods (columnar addition and subtraction). | To perform mental calculations, including with mixed operations and large numbers. To use their knowledge of the order of operations to carry out | | | Addition and subtraction: written methods | and subtraction with increasingly large numbers and decimals. | algorithms for addition and subtraction operations. | To solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. To use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy. | calculations involving the four operations To use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy. To solve problems involving addition, subtraction, multiplication and division. | | Week. | Mathematical aspect | Non-negotiable end points Year 5. | Non-negotiable end points
Year 6 | Curriculum statements – Year 5. | Curriculum Statements. Year 6. | |---|---|--|---|--|--| | | | | | To solve problems involving numbers up to three decimal places. | To use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy. Add whole numbers and decimals using formal written methods (columnar addition). Subtract whole numbers and decimals using formal written methods (columnar subtraction). | | Find the missing digits. W 5 + 3 | and policy documents: /hat do you notice? 2 2 4 7 ? ? 5 9 0 4 0 ? 3 ? 2 | 3,565 + 2,2 Use this calculation to following calculation True or False? $4,565 + 1,250 = 5,8$ $5,815 - 2,250 = 3,5$ $4,815 - 2,565 = 2,2$ $3,595 + 2,220 = 5,8$ | s are true or false. 115 65 | 65,442 +26,894 -58,109 26,454 | Join each of these calculations to the number that is nearest to the correct answer. One has been done for you. | | 3. | Multiplication and division: square and cube numbers written methods | Knows the definition of square and cube numbers and the correct notation. Knows compact notation for long multiplication. Knows the compact algorithm for short division including remainders. | Knows the efficient written algorithms for long/short multiplication and division | To recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3). To multiply numbers up to 4 digits by a one- or two-digit number using an efficient written method, including long multiplication for two-digit numbers. To divide numbers up to 4 digits by a one-digit number using the efficient written method of short division and interpret remainders appropriately for the context. | To identify common factors, common multiples and prime numbers To multiply multi-digit numbers up to 4 digits by a one-digit whole number using the efficient written method of short multiplication. To multiply multi-digit numbers up to 4 digits by a two-digit whole number using the efficient written method of long multiplication. To divide numbers up to 4 digits by a one-digit whole number using the efficient written method of long division, and interpret remainders as whole number remainders, To divide numbers up to 4 digits by a two-digit whole number using the efficient written method of long division, and interpret remainders as whole number remainders, To solve problems involving addition, subtraction, multiplication and division. | | A square number is can also be called 'c squared is ² . Cube number A cube number is a | a number multiplied by its
a number squared'. The syr
rs
number multiplied by itse
b be called 'a number cube | mbol for
elf 3 | | Write the following as a number sentence and then solve them: 1) $2^2 =$ 2) $4^2 =$ 3) $5^2 =$ 4) $10^2 =$ | Circle the square numbers. 1 | | Week. | Mathematical aspect | Non-negotiable end points Year 5. | Non-negotiable end points
Year 6 | Curriculum statements – Year 5. | Curriculum Statements. Year 6. | |--|--|--|---|--|--| | 4. | Geometry: position
and direction
all four quadrants | Knows how to describe a translation or reflection of a shape, including reference to the axes in the first quadrant. | Knows how to draw and label a pair of axes in all four quadrants with equal scaling, including the use of negative numbers. | • To identify, describe and represent the position of a shape following a reflection or translation using the appropriate language, and know that the shape has not changed. | To describe positions on the full co-ordinate grid (all four quadrants). Including on blank axis. To draw and translate simple shapes on the co-ordinate plane and reflect them in the axes. | | Object A is reflected in the Write the coordinates of Wr | mirror line to give image B. e vertices for each shape. Original Coordinate Ccordin | | | This right-angled triangle is translated right 6, down 3. Draw the triangle in its new position. | Here is a co-ordinate grid. Here is a co-ordinate grid. Here is a co-ordinate grid. Finded Shape A in the y axis. What are the coordinates of the vertices of your new shape. | | 5. | Fractions:
calculating | Knows how to convert fractions to a common denominator for addition and subtraction. | Knows how to calculate with fractions. Knows that dividing by 2 is the same as multiplying by $\frac{1}{2}$. | To recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements > 1 as a mixed number. To add and subtract fractions with the same denominator and multiples of the same number | To add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions. To multiply simple pairs of proper fractions, writing the answer in its simplest form. To divide proper fractions by whole numbers. | | Links to resources a $\frac{1}{2} \times \frac{2}{3} = \frac{2}{6} =$ | and policy documents: $\frac{1}{3}$ | $\frac{1}{4} \div 2 \qquad \text{We know this is the san}$ Now it's your turn! $\frac{1}{5} \div 2 = \frac{1}{5}$ $\frac{1}{6} \div 3 = \frac{1}{6}$ | $x = \frac{1}{4} x \frac{1}{2} = \frac{1}{8}$ $x = \frac{1}{4} x = \frac{1}{8} x = \frac{1}{8}$ | Eva has a full tin of paint. She uses $\frac{1}{3}$ of the tin on Friday, $\frac{1}{21}$ on Saturday and $\frac{2}{7}$ on Sunday. How much paint does she have left? Tommy is adding mixed numbers. He adds the wholes and then adds the fractions. Then, Tommy simplifies his answer. $1\frac{1}{2}+2\frac{1}{6}=1\frac{3}{6}+2\frac{1}{6}=3\frac{4}{6}=3\frac{2}{3}$ Use Tommy's method to add the fractions. $3\frac{1}{2}+2\frac{3}{8}= 34\frac{1}{9}+5\frac{2}{5}= 12\frac{5}{12}+2\frac{1}{7}=$ | Whitney is calculating $\frac{5}{8} + \frac{3}{16}$ She finds the lowest common multiple of 8 and 16 to find a common denominator. LCM of 8 and 16 is 16 $\frac{5}{8} = \frac{10}{16}$ $\frac{10}{16} + \frac{3}{16} = \frac{13}{16}$ Use this method to calculate: $\frac{1}{3} + \frac{2}{9} = \frac{3}{7} + \frac{7}{21} = \frac{8}{15} + \frac{1}{5} = \frac{3}{16} + \frac{3}{8} + \frac{1}{4} =$ Use <, > or \equiv to make the statements correct. | | Convert the mixed numbers to improper fractions to calculate: $4\frac{4}{5} - 1\frac{9}{10} = 2\frac{1}{7} - 1\frac{1}{3} = 3\frac{5}{12} - 1\frac{7}{9} = 3\frac{5}{11} - 1\frac{4}{5} =$ | | | | | $\frac{1}{4} \times \frac{1}{2} \qquad \qquad \frac{1}{4} \times 2$ $\frac{1}{4} \times \frac{1}{3} \qquad \qquad \frac{1}{4} \div 3$ | | Week. | Mathematical aspect | Non-negotiable end points Year 5. | Non-negotiable end points
Year 6 | Curriculum statements – Year 5. | Curriculum Statements. Year 6. | |---|--|--|---|---|--| | | | | | | | | 6. | Fractions:
calculating with
decimals | Knows that percentages, decimals and fractions are different ways of expressing proportions. | Knows how to multiply and divide numbers with up to two decimal places by one-digit and two-digit whole numbers. Knows multiply decimals by whole numbers in practical contexts, such as measures and money. Knows how to divide decimal numbers by one-digit whole number, in practical contexts involving measures and money. | • To solve problems which require knowing percentage and decimal equivalents of $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{4}{5}$ and those fractions with a denominator of a multiple of 10 or 25. | To multiply one-digit numbers with up to two decimal places by whole numbers. To use written division methods in cases where the answer has up to two decimal places. To solve problems which require answers to be rounded to specified degrees of accuracy. To recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. | | A jar of sweets weighs How much would 4 jar | | 3 birthday cards at | gazines at £1.34 each and £1.65 each. | A E11.50 E14.85 E18.50 | let's try some mental multiplication using decimals. a) 0.6 x 7 = | | Decimal 0.6 | Eraction in tenths or | applified fraction 3 5 | | rounded to the nearest whole number is 6.01 6 9.51 6 | 6 2 4 1 2 3 5 4 7 6 x 6 1 8 7 2 3 7 1 2 1 1 1 7 2 5 2 8 4 5 3 6 1 8 7 8 ÷ 8 3 1 4 ÷ 2 1 1 5 7 8 6 6 6 ÷ 8 7 8 ÷ 8 7 8 • 0 0 2 3 1 4 − 6 4 − 7 2 − 7 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 | | 0 1 1 1 0.95 | | | | E.g. 560 ÷ 24 = 23.333 24 5 6 0.0000 | 2 0 6 0 - 1 6 - 5 6 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 1 4 0 1 4 0 1 4 | | Week. | Mathematical aspect | Non-negotiable end points Year 5. | Non-negotiable end points Year 6 | Curriculum statements – Year 5. | Curriculum Statements. Year 6. | |-------|---|--|---|---|--| | 7. | Percentages:
Calculation
FDP equivalence | Knows that percentages, decimals and fractions are different ways of expressing proportions. | Knows how to calculate % Knows how to use equivalence between fractions, decimals and % when calculating. | To recognise the per cent symbol (%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal. To solve problems which require knowing percentage and decimal equivalents of \(\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}, \frac{4}{5} \) and those fractions with a denominator of a multiple of 10 or 25. | Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. Find percentages of amounts. Solve problems involving the calculation of percentages (for example, of measures, and such as 15% of 360) and the use of percentages for comparison. | | | 100% 100% = 500 What is 10%? What is 50% Is 70% = 350 100% = £400 What is 30%? Is 20% = £90? | A b Percentage 50% 259 Hundredths 50 100 Decimal 0.5 Fraction 1/2 Hundredth grid | | 100% 50% 25% 75% 10% 1000 m 500 m 250 m 750 m 100 m 160 kg 80 kg 40 kg 120 kg 16 kg 1080 mm 540 mm 270 mm 810 mm 108 mm | 100% 50% 25% 75% 10% 20% 5% 240 kg 120 kg 60 kg 180 kg 24 kg 48 kg 12 kg 1200 m 600 m 300 m 900 m 120 m 240 m 60 m 80 cm 40 cm 20 cm 60 cm 8 cm 16 cm 4 cm | | 8. | Measurement: area, perimeter and volume | Knows the three dimensions for finding the volume. | Knows how to recognise that shapes with the same area can have different perimeters and vice versa. Knows the formula for volume <i>l x b x h</i> | ◆To measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres; ◆To calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm²) and square metres (m²) and estimate the area of irregular shapes; ◆ To estimate volume [for example, using 1 cm3 blocks to build cuboids (including cubes)] and capacity [for example, using water] | To recognise that shapes with the same area can have different perimeters and vice versa. To calculate the area of parallelograms and triangles. To recognise when it is necessary to use the formulae for area and volume of shapes. To calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm3) and cubic metres (m3) and extending to other units such as mm3 and km3. | | 4 | · · | 30 20 | cm ³ | Area = 24 m² Each square has an area of 4 square cm. What is the length of each square? What is the perimeter of the whole shape? How many more cubes would this model need to have a volume of 27 cm³? | This cuboid has dimensions of 1cm × 1cm × 1cm. Estimate the volume of the following cuboids. | | Week. | Mathematical aspect | Non-negotiable end points Year 5. | Non-negotiable end points
Year 6 | Curriculum statements – Year 5. | Curriculum Statements. Year 6. | |---|---|---|--|---|--| | 9. | Ratio and proportion:
ratio, scaling and
scale factors | Knows proportions are out of the whole and can be represented as fractions, decimals or percentages. | Knows ratios compares quantities. Knows the notation a:b to record a ratio. Knows how to use multiplication/division to find a scale factor. | • To solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates. | To solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts To solve problems involving similar shapes where the scale factor is known or can be found. To solve problems involving unequal sharing and grouping using knowledge of fractions and multiples. | | Serves 3 people 1 egg puddings for or | "for every egg you need g flour milk." ed, only 2 seeds grew. | Here are two similar right-angled triangles $\frac{a}{b}$. Write the ratio of side a to side b . | a:b= | Can you complete this chart showing the price of biscuits? Biscuits 1 2 3 4 5 6 7 8 | Ratio of red to green to yellow is 3:1:1 Rectangles B and C have been scaled from rectangle A. Find the missing lengths. 4cm 4cm A cm C c | | 10. | Algebra:
finding unknowns
and variables | Knows how to find missing numbers in a sequence. | Knows how to use the arithmetic relationships to find unknowns or variables. | To find pairs of numbers that satisfy number sentences involving two unknowns. | To find pairs of numbers that satisfy number sentences involving two unknowns. To enumerate all possibilities of combinations of two variables. | | Links to resources a | nd policy documents: | | | The numbers in this sequence increase by 45 each time. | Here is a number line starting at 0 Two numbers are marked on the number line. | | A theme park sells tickets online. Each ticket costs £24 There is a £3 charge for buying tick Which of these shows how to calcul number of tickets × 3 + 24 number of tickets × 24 + 3 | | | | Write the missing numbers. 155 200 245 | A is 20 less than B. What is the value of B? | | number of tickets + 3 × 24 number of tickets + 24 × 3 | | | | | $x + 2y = 20$ $x \text{ and } y \text{ are whole numbers less than 10}$ $\text{What could } x \text{ and } y \text{ be?}$ $x = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | | 11. | Statistics:
mean average
line graphs | Knows which representations of data are most | Knows the arithmetic for finding the mean average. | • To solve comparison, sum and difference problems using information presented in a line graph. | To calculate and interpret the mean as an average. To interpret and construct pie charts and line graphs and use these to solve problems; | | Week. | Mathematical aspect | Non-negotiable end points Year 5. appropriate and why using a line graph. | Non-negotiable end points
Year 6 | Curriculum statements – Year 5. | Curriculum Statements. Year 6. | |---|--|--|--|--|---| | Links to resources Calculate the mean number of crayons: | Crayon colour Amount Blue 14 Green 11 Red 10 Yellow 9 | Sti L O | Idren Height (cm) efan 144 ara 136 livia 142 hen 143 aria 152 elev 148 arah 150 | Here is a method to find the mean. No. of glasses of juice drunk by 3 friends The mean number of glasses of juice drunk is 3 Use this method to calculate the mean average for the number of slices of pizza eaten by each child. | The other ticket cost £7 The other ticket cost £7 What was the mean cost of the tickets? Hassan is the top batsman for the cricket team. His scores over the year are: 134, 60, 17, 63, 38, 84, 11 Calculate the mean number of runs Hassan scored. | | 12. | Geometry: properties of shape, 3D nets circles missing lengths ad angles | Knows how to use angle sum facts and other properties to make deductions about missing angles and lengths. | Knows how to visualise 3D shapes from nets. Knows the parts of the circle. | To use the properties of rectangles to deduce related facts and find missing lengths and angles. | To recognise, describe and build simple 3D shapes, including making nets To illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius | | Week. | Mathematical aspect | Non-negotiable end points Year 5. | Non-negotiable end points
Year 6 | Curriculum statements – Year 5. | Curriculum Statements. Year 6. | |---|---------------------|--|---|--|--| | Here are some nets of shapes. For each net, put a tick (\(\frac{1}{2} \) if it folds Put a cross (\(\frac{1}{2} \)) if it does not. | | a diameter of 64 cm. If the bicycle wheel? | Radius Diameter Centre Circumference | • Here is a rectangle. A b What is the sum of angles a and b? Find angle c. | Complete the table: Radius Diameter 26 cm 37 mm 2.55 m 99 cm 19.36 cm Match each net to the name of its shape. One has been done for you. square – based pyramid triangular prism cube square tetrahedron cuboid |