

WRPS Maths Medium Term Planning: Spring Term Year 4 Year 5

Week.	Mathematical aspect	Non-negotiable end points Year 4.	Non-negotiable end points Year 5	Curriculum statements - Year 4.	Curriculum Statements. Year 5.
6.	Geometry; Describing and classifying shapes including angles	Knows how to identify acute and obtuse angles. Knows that two right angles form a straight line.	Knows that angles are measured using a protractor. Knows right, acute, obtuse, straight and reflex angles.	- To compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes. - To identify lines of symmetry in 2D shapes presented in different orientations. - To complete a simple symmetric figure with respect to a specific line of symmetry. - To identify acute and obtuse angles and compare and order angles up to two right angles by size.	- To know angles are measured in degrees; estimate and compare acute, obtuse and reflex angles - To draw given angles and measure them in degrees (O). To identify: - angles at a point and one whole turn (total 360) - angles at a point on a straight line and $1 / 2$ a turn (total $180{ }^{\circ}$) - other multiples of 90 .
Links to resources and policy documents: A right angle is \qquad degrees. Acute angles are \qquad than a right angle. Obtuse angles are \qquad than a right angle.					
7.	$\begin{gathered} \text { Statistics: } \\ \text { Solve problems from } \\ \text { data } \\ \text { Reading line graphs } \end{gathered}$	Knows how to interpret and analyse graphs and charts to solve problems.	Knows which representations of data are most appropriate and why using a line graph.	- To interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. - To solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and simple line graphs.	- To solve comparison, sum and difference problems using information presented in a line graph. - To identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers - To solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes;

	Week.	Mathematical	aspect	Non-negotiable end points Year 4.	Non-negotiable end points Year 5	Curriculum statements - Year 4.	Curriculum Statements. Year 5.
Links The ta Comp 	o resourc shows avera e the graph u Jan Feb Mar Apr	licy document eicester over a year nation from the table	s:			The bar chart shows the number of nuts that pupils in the class ate last Saturday. Sautrasus nut onosumpion a) How many pupils ate more than 9 nuts? b) How many pupils ate fewer than 7 nuts? \square c) 2 pupils ate 1 nut. 5 pupils ate 2 nuts. No pupils ate 3 nuts. How many pupils ate no nuts?	Here is a line graph showing the temperature in a garden. What was the temperature at
	8.	All four opera Factor pairs, la arithmetic	tions: aws of	Knows the efficient methods of calculating in all four operations. Knows how to find factor pairs. Knows the distributive law along with commutative and associative laws.	Knows the definition of square and cube numbers and the correct notation.	- To estimate and use inverse operations to check answers to a calculation. - To solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why. - To recall multiplication and division facts for multiplication tables up to 12×12. - To recognise and use factor pairs and commutativity in mental calculations. - To solve problems involving multiplying and adding, including using the distributive law and harder multiplication problems such as which n objects are connected to m objects.	- To recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3).
Links to resources and policy documents: The "Commutative Laws" say we can swap numbers over and still get the same answer ... when we add: . or when we multiply $\begin{gathered} a \times b=b \times a \\ \text { Example: } \\ 2 \times 4=4 \times 2 \end{gathered}$						Complete the factor pairs for 12 $\begin{array}{ll} 00000000 & 1 \times \square=12 \\ \square \times 6=12 & \bigcirc \bigcirc 00 \\ \square \times \square=12 \end{array}$	Use your knowledge of multiplication tables to complete these calculations. Which calculations have the same answer? Can you explain why?

Week.	Mathematical aspect	Non-negotiable end points Year 4.	Non-negotiable end points Year 5	Curriculum statements - Year 4.	Curriculum Statements. Year 5.
10 Spring 1	Fractions: calculating Solving problems	Knows how to add and subtract fractions with the same denominator.	Knows how to convert fractions to a common denominator for addition and subtraction.	- To solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number. - To recognise and write decimal equivalents to $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$ - To solve simple measure and money problems involving fractions and decimals to two decimal places.	- To recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements > 1 as a mixed number. - To add and subtract fractions with the same denominator and multiples of the same number
Links to resou Use the counters $\frac{1}{4}=\ldots \quad \frac{2}{4}=$ \square $\frac{1}{4}=\quad \frac{2}{4}=$	policy documents: ls to calculate the whole: \qquad _ counters in one part. $\frac{4}{4}$ or 1 whole $=$ \qquad re 7 counters in one part. $\frac{4}{4}$ or 1 whole $=$ \qquad	Equivalent fractions However, sometimes the denominators are different. You use equivalent fractions to make them the same. A common multiple of 2 and 3 is 6 . So, for each fraction we need an equivalent fraction with a denominator of 6 . Now you can add these together.	$\begin{aligned} & \frac{1}{2}+\frac{1}{3}=? \\ & =\frac{3}{6} \quad \frac{1}{3} \times 2=\frac{2}{6} \\ & \frac{3}{6}+\frac{2}{6}=\frac{5}{6} \end{aligned}$	Write three fraction equations for this model.	Tommy converts the improper fraction $\frac{27}{8}$ into a mixed number using bar models. $3 \frac{3}{8}$ Use Tommy's method to convert $\frac{25}{8}, \frac{27}{6}, \frac{18}{7}$ and $\frac{32}{4}$ $=$ \square 1 1 1 Farmer Staneff owns a field. He plants carrots on $\frac{1}{3}$ of the field. He plants potatoes on $\frac{2}{9}$ of the field. He plants onions on $\frac{5}{18}$ of the field. What fraction of the field is covered altogether?
11.	Addition and subtraction: written methods including money in pounds and pence.	Knows how to add and subtract using standard written algorithms including in the context of money.	Knows and applies the formal written methods of columnar addition and subtraction within the context of money.	- To add and subtract numbers with up to four digits using the efficient written methods of columnar addition and subtraction where appropriate. - To estimate and use inverse operations to check answers to a calculation. - To solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	- To add and subtract whole numbers with more than 4 digits, including using efficient written methods (columnar addition and subtraction). - To solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. - To use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.

Week. Mathematical aspect	Non-negotiable end points Year 4. Non-negotiable end points Year 5	Curriculum statements - Year 4.	Curriculum Statements. Year 5.				
		Price ist footballs (3) £4.40 each tenis balls. Q $£ 6.50$ tor 3 golf balls $£ 4.35$ for 4 I buy 8 golf balls, 12 tennis balls and 2 footballs How much change will I get from $£ 50$?	Alisha has $£ 18.35$ in her purse. Her father gives her $£ 5$ pocket money. She buys a book for $£ 7.99$ and a bag for $£ 13.49$. How much will she have left? Write the amount $£ 100000$ less than (a) $£ 600000$ (b) $£ 870000$ (c) 1000000 (d) $£\\|\\|\\|\\|$				
12.Geometry: position and direction all four quadrants	Knows how to describe positions as translations using the correct terms. Knows how to describe a translation or reflection of a shape, including reference to the axes in the first quadrant.	- To describe positions on a 2D grid as coordinates in the first quadrant. - To describe movements between positions as translations of a given unit to the left/right and up/down. - To plot specified points and draw sides to complete a given polygon.	- To identify, describe and represent the position of a shape following a reflection or translation using the appropriate language, and know that the shape has not changed.				
Links to resources and policy documents:	 Coordinates can use positive and negative numbers. Whether positive or negative, always write the x -axis coordinate followed by the y coordinate. Look at the circle point. It is 3 squares along and 4 down. We write this coordinate as $(3,-4)$		Write the coordinates for the points shown. $\begin{aligned} & *(\ldots, \ldots) *(\ldots, \ldots) \\ & *(\ldots, \ldots) *(\ldots, \ldots) \end{aligned}$ Plot two more points to create a square. Translate A 6 right and 3 down. Record the coordinates before (\quad, , $)$ and after (Translate B and C 4 left and 3 up. Record the coordinates before (\quad, -) and after ($\quad, \quad-$)				

